- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Tzu-Hao (1)
-
Levine, Brian N. (1)
-
Liberatore, Marc (1)
-
Lynn, Brian (1)
-
Lynn, Brian Patrick (1)
-
Park, Young Soo (1)
-
Sayd, Dina (1)
-
Silivanov, Viktor (1)
-
Su, Hao (1)
-
Tian, Yingli (1)
-
Wang, Dianpeng (1)
-
Wright, Matthew (1)
-
Yu, Shuangyue (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The creation and distribution of child sexual abuse materials (CSAM) involves a continuing violation of the victims? privacy beyond the original harms they document. A large volume of these materials is distributed via the Freenet anonymity network: in our observations, nearly one third of requests on Freenet were for known CSAM. In this paper, we propose and evaluate a novel approach for investigating these violations of exploited children's privacy. Our forensic method distinguishes whether or not a neighboring peer is the actual uploader or downloader of a file or merely a relayer. Our method requires analysis of the traffic sent to a single, passive node only. We evaluate our method extensively. Our in situ measurements of actual CSAM requests show an FPR of 0.002 ± 0.003 for identifying downloaders. And we show an FPR of 0.009 ± 0.018, a precision of 1.00 ± 0.01, and a TPR of 0.44 ± 0.01 for identifying uploaders based on in situ tests. Further, we derive expressions for the FPR and Power of our hypothesis test; perform simulations of single and concurrent downloaders; and characterize the Freenet network to inform parameter selection. We were participants in several United States Federal Court cases in which the use of our method was uniformly upheld.more » « less
-
Yu, Shuangyue; Huang, Tzu-Hao; Wang, Dianpeng; Lynn, Brian Patrick; Sayd, Dina; Silivanov, Viktor; Park, Young Soo; Tian, Yingli; Su, Hao (, IEEE Robotics and Automation Letters)This paper presents design and control innovations of wearable robots that tackle two barriers to widespread adoption of powered exoskeletons, namely restriction of human movement and versatile control of wearable co-robot systems. First, the proposed quasi-direct drive actuation comprising of our customized high-torque density motors and low ratio transmission mechanism significantly reduces the mass of the robot and produces high backdrivability. Second, we derive a biomechanics model-based control that generates biological torque profile for versatile control of both squat and stoop lifting assistance. The control algorithm detects lifting postures using compact inertial measurement unit (IMU) sensors to generate an assistive profile that is proportional to the biological torque produced from our model. Experimental results demonstrate that the robot exhibits low mechanical impedance (1.5 Nm resistive torque) when it is unpowered and 0.5 Nm resistive torque with zero-torque tracking control. Root mean square (RMS) error of torque tracking is less than 0.29 Nm (1.21% error of 24 Nm peak torque). Compared with squatting without the exoskeleton, the controller reduces 87.5%, 80% and 75% of the of three knee extensor muscles (average peak EMG of 3 healthy subjects) during squat with 50% of biological torque assistance.more » « less
An official website of the United States government
